Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(11): 5174-5185, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451543

RESUMO

Nanofiltration (NF) has the potential to achieve precise ion-ion separation at the subnanometer scale, which is necessary for resource recovery and a circular water economy. Fabricating NF membranes for selective ion separation is highly desirable but represents a substantial technical challenge. Dipole-dipole interaction is a mechanism of intermolecular attractions between polar molecules with a dipole moment due to uneven charge distribution, but such an interaction has not been leveraged to tune membrane structure and selectivity. Herein, we propose a novel strategy to achieve tunable surface charge of polyamide membrane by introducing polar solvent with a large dipole moment during interfacial polymerization, in which the dipole-dipole interaction with acyl chloride groups of trimesoyl chloride (TMC) can successfully intervene in the amidation reaction to alter the density of surface carboxyl groups in the polyamide selective layer. As a result, the prepared positively charged (PEI-TMC)-NH2 and negatively charged (PEI-TMC)-COOH composite membranes, which show similarly high water permeance, demonstrate highly selective separations of cations and anions in engineering applications, respectively. Our findings, for the first time, confirm that solvent-induced dipole-dipole interactions are able to alter the charge type and density of polyamide membranes and achieve tunable surface charge for selective and efficient ion separation.


Assuntos
Cloretos , Nylons , Cloretos/química , Nylons/química , Membranas Artificiais , Solventes , Água
2.
Small ; : e2308904, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098304

RESUMO

High-salinity wastewater treatment is perceived as a global water resource recycling challenge that must be addressed to achieve zero discharge. Monovalent/divalent salt separation using membrane technology provides a promising strategy for sulfate removal from chlor-alkali brine. However, existing desalination membranes often show low water permeance and insufficient ion selectivity. Herein, an aminal-linked covalent organic framework (COF) membrane featuring a regular long-range pore size of 7 Å and achieving superior ion selectivity is reported, in which a uniform COF layer with subnanosized channels is assembled by the chemical splicing of 1,4-phthalaldehyde (TPA)-piperazine (PZ) COF through an amidation reaction with trimesoyl chloride (TMC). The chemically spliced TPA-PZ (sTPA-PZ) membrane maintains an inherent pore structure and exhibits a water permeance of 13.1 L m-2  h-1  bar-1 , a Na2 SO4 rejection of 99.1%, and a Cl- /SO4 2- separation factor of 66 for mixed-salt separation, which outperforms all state-of-the-art COF-based membranes reported. Furthermore, the single-stage treatment of NaCl/Na2 SO4 mixed-salt separation achieves a high NaCl purity of above 95% and a recovery rate of ≈60%, offering great potential for industrial application in monovalent/divalent salt separation and wastewater resource utilization. Therefore, the aminal-linked COF membrane developed in this work provides a new research avenue for designing smart/advanced membrane materials for angstrom-scale separations.

3.
ACS Appl Mater Interfaces ; 15(41): 48695-48704, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37796665

RESUMO

Positively charged nanofiltration (NF) membranes offer enormous potential for lithium-magnesium separation, hard water softening, and heavy metal removal. However, fundamental performance limitations for these applications exist in conventional polyamide-based NF membranes due to the negatively charged surface and low ion-ion selectivity. We hereby innovatively develop an advanced positively charged polyamine-based NF membrane built by the nucleophilic substitution of bromine and amine groups for precise ion-ion separation. Specifically, polyethylenimine (PEI) and 1,3,5-tris(bromomethyl)benzene (TBB) are interfacially polymerized to generate an amine-linked PEI-TBB selective layer with an ultrathin thickness of ∼95 nm, an effective pore size of 6.5 Å, and a strong positively charged surface with a zeta potential of +20.9 mV at pH 7. The PEI-TBB composite membrane achieves a water permeance of 4.2 L·m-2·h-1·bar-1, various divalent salt rejections above 90%, and separation factors above 15 for NaCl/MgCl2 and LiCl/MgCl2 mixed solutions. A three-stage NF process is implemented to achieve a Mg2+/Li+ mass ratio sharply decreasing from 50 to 0.11 with a total separation factor (SLi,Mg) of 455. Furthermore, the polyamine-based NF membrane exhibits excellent operational stability under continuous filtration and high operational pressure, demonstrating great application potential for precise ion-ion separation.

4.
Front Psychiatry ; 14: 1148534, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139323

RESUMO

As psychological diseases become more prevalent and are identified as the leading cause of acquired disability, it is essential to assist people in improving their mental health. Digital therapeutics (DTx) has been widely studied to treat psychological diseases with the advantage of cost savings. Among the techniques of DTx, a conversational agent can interact with patients through natural language dialog and has become the most promising one. However, conversational agents' ability to accurately show emotional support (ES) limits their role in DTx solutions, especially in mental health support. One of the main reasons is that the prediction of emotional support systems does not extract effective information from historical dialog data and only depends on the data derived from one single-turn interaction with users. To address this issue, we propose a novel emotional support conversation agent called the STEF agent that generates more supportive responses based on a thorough view of past emotions. The proposed STEF agent consists of the emotional fusion mechanism and strategy tendency encoder. The emotional fusion mechanism focuses on capturing the subtle emotional changes throughout a conversation. The strategy tendency encoder aims at foreseeing strategy evolution through multi-source interactions and extracting latent strategy semantic embedding. Experimental results on the benchmark dataset ESConv demonstrate the effectiveness of the STEF agent compared with competitive baselines.

5.
IEEE Trans Cybern ; PP2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-37028342

RESUMO

Compressive sensing (CS) techniques using a few compressed measurements have drawn considerable interest in reconstructing multispectral imagery (MSI). Nonlocal-based tensor methods have been widely used for MSI-CS reconstruction, which employ the nonlocal self-similarity (NSS) property of MSI to obtain satisfactory results. However, such methods only consider the internal priors of MSI while ignoring important external image information, for example deep-driven priors learned from a corpus of natural image datasets. Meanwhile, they usually suffer from annoying ringing artifacts due to the aggregation of overlapping patches. In this article, we propose a novel approach for highly effective MSI-CS reconstruction using multiple complementary priors (MCPs). The proposed MCP jointly exploits nonlocal low-rank and deep image priors under a hybrid plug-and-play framework, which contains multiple pairs of complementary priors, namely, internal and external, shallow and deep, and NSS and local spatial priors. To make the optimization tractable, a well-known alternating direction method of multiplier (ADMM) algorithm based on the alternating minimization framework is developed to solve the proposed MCP-based MSI-CS reconstruction problem. Extensive experimental results demonstrate that the proposed MCP algorithm outperforms many state-of-the-art CS techniques in MSI reconstruction. The source code of the proposed MCP-based MSI-CS reconstruction algorithm is available at: https://github.com/zhazhiyuan/MCP_MSI_CS_Demo.git.

6.
IEEE Trans Neural Netw Learn Syst ; 34(10): 7593-7607, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35130172

RESUMO

As a spotlighted nonlocal image representation model, group sparse representation (GSR) has demonstrated a great potential in diverse image restoration tasks. Most of the existing GSR-based image restoration approaches exploit the nonlocal self-similarity (NSS) prior by clustering similar patches into groups and imposing sparsity to each group coefficient, which can effectively preserve image texture information. However, these methods have imposed only plain sparsity over each individual patch of the group, while neglecting other beneficial image properties, e.g., low-rankness (LR), leads to degraded image restoration results. In this article, we propose a novel low-rankness guided group sparse representation (LGSR) model for highly effective image restoration applications. The proposed LGSR jointly utilizes the sparsity and LR priors of each group of similar patches under a unified framework. The two priors serve as the complementary priors in LGSR for effectively preserving the texture and structure information of natural images. Moreover, we apply an alternating minimization algorithm with an adaptively adjusted parameter scheme to solve the proposed LGSR-based image restoration problem. Extensive experiments are conducted to demonstrate that the proposed LGSR achieves superior results compared with many popular or state-of-the-art algorithms in various image restoration tasks, including denoising, inpainting, and compressive sensing (CS).

7.
IEEE Trans Med Imaging ; 41(8): 2144-2156, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35235505

RESUMO

Spectral computed tomography (CT) reconstructs images from different spectral data through photon counting detectors (PCDs). However, due to the limited number of photons and the counting rate in the corresponding spectral segment, the reconstructed spectral images are usually affected by severe noise. In this paper, we propose a fourth-order nonlocal tensor decomposition model for spectral CT image reconstruction (FONT-SIR). To maintain the original spatial relationships among similar patches and improve the imaging quality, similar patches without vectorization are grouped in both spectral and spatial domains simultaneously to form the fourth-order processing tensor unit. The similarity of different patches is measured with the cosine similarity of latent features extracted using principal component analysis (PCA). By imposing the constraints of the weighted nuclear and total variation (TV) norms, each fourth-order tensor unit is decomposed into a low-rank component and a sparse component, which can efficiently remove noise and artifacts while preserving the structural details. Moreover, the alternating direction method of multipliers (ADMM) is employed to solve the decomposition model. Extensive experimental results on both simulated and real data sets demonstrate that the proposed FONT-SIR achieves superior qualitative and quantitative performance compared with several state-of-the-art methods.

8.
IEEE Trans Image Process ; 31: 1311-1324, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35020596

RESUMO

Constructing effective priors is critical to solving ill-posed inverse problems in image processing and computational imaging. Recent works focused on exploiting non-local similarity by grouping similar patches for image modeling, and demonstrated state-of-the-art results in many image restoration applications. However, compared to classic methods based on filtering or sparsity, non-local algorithms are more time-consuming, mainly due to the highly inefficient block matching step, i.e., distance between every pair of overlapping patches needs to be computed. In this work, we propose a novel Self-Convolution operator to exploit image non-local properties in a unified framework. We prove that the proposed Self-Convolution based formulation can generalize the commonly-used non-local modeling methods, as well as produce results equivalent to standard methods, but with much cheaper computation. Furthermore, by applying Self-Convolution, we propose an effective multi-modality image restoration scheme, which is much more efficient than conventional block matching for non-local modeling. Experimental results demonstrate that (1) Self-Convolution with fast Fourier transform implementation can significantly speed up most of the popular non-local image restoration algorithms, with two-fold to nine-fold faster block matching, and (2) the proposed online multi-modality image restoration scheme achieves superior denoising results than competing methods in both efficiency and effectiveness on RGB-NIR images. The code for this work is publicly available at https://github.com/GuoLanqing/Self-Convolution.

9.
IEEE Trans Neural Netw Learn Syst ; 33(9): 4451-4465, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33625989

RESUMO

Recent works on structural sparse representation (SSR), which exploit image nonlocal self-similarity (NSS) prior by grouping similar patches for processing, have demonstrated promising performance in various image restoration applications. However, conventional SSR-based image restoration methods directly fit the dictionaries or transforms to the internal (corrupted) image data. The trained internal models inevitably suffer from overfitting to data corruption, thus generating the degraded restoration results. In this article, we propose a novel hybrid structural sparsification error (HSSE) model for image restoration, which jointly exploits image NSS prior using both the internal and external image data that provide complementary information. Furthermore, we propose a general image restoration scheme based on the HSSE model, and an alternating minimization algorithm for a range of image restoration applications, including image inpainting, image compressive sensing and image deblocking. Extensive experiments are conducted to demonstrate that the proposed HSSE-based scheme outperforms many popular or state-of-the-art image restoration methods in terms of both objective metrics and visual perception.

10.
IEEE Trans Cybern ; 52(11): 12440-12453, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34161250

RESUMO

This article proposes a novel nonconvex structural sparsity residual constraint (NSSRC) model for image restoration, which integrates structural sparse representation (SSR) with nonconvex sparsity residual constraint (NC-SRC). Although SSR itself is powerful for image restoration by combining the local sparsity and nonlocal self-similarity in natural images, in this work, we explicitly incorporate the novel NC-SRC prior into SSR. Our proposed approach provides more effective sparse modeling for natural images by applying a more flexible sparse representation scheme, leading to high-quality restored images. Moreover, an alternating minimizing framework is developed to solve the proposed NSSRC-based image restoration problems. Extensive experimental results on image denoising and image deblocking validate that the proposed NSSRC achieves better results than many popular or state-of-the-art methods over several publicly available datasets.

11.
IEEE Trans Image Process ; 30: 5819-5834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34133279

RESUMO

Recent works that utilized deep models have achieved superior results in various image restoration (IR) applications. Such approach is typically supervised, which requires a corpus of training images with distributions similar to the images to be recovered. On the other hand, the shallow methods, which are usually unsupervised remain promising performance in many inverse problems, e.g., image deblurring and image compressive sensing (CS), as they can effectively leverage nonlocal self-similarity priors of natural images. However, most of such methods are patch-based leading to the restored images with various artifacts due to naive patch aggregation in addition to the slow speed. Using either approach alone usually limits performance and generalizability in IR tasks. In this paper, we propose a joint low-rank and deep (LRD) image model, which contains a pair of triply complementary priors, namely, internal and external, shallow and deep, and non-local and local priors. We then propose a novel hybrid plug-and-play (H-PnP) framework based on the LRD model for IR. Following this, a simple yet effective algorithm is developed to solve the proposed H-PnP based IR problems. Extensive experimental results on several representative IR tasks, including image deblurring, image CS and image deblocking, demonstrate that the proposed H-PnP algorithm achieves favorable performance compared to many popular or state-of-the-art IR methods in terms of both objective and visual perception.

12.
IEEE Trans Image Process ; 30: 5223-5238, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34010133

RESUMO

Image nonlocal self-similarity (NSS) property has been widely exploited via various sparsity models such as joint sparsity (JS) and group sparse coding (GSC). However, the existing NSS-based sparsity models are either too restrictive, e.g., JS enforces the sparse codes to share the same support, or too general, e.g., GSC imposes only plain sparsity on the group coefficients, which limit their effectiveness for modeling real images. In this paper, we propose a novel NSS-based sparsity model, namely, low-rank regularized group sparse coding (LR-GSC), to bridge the gap between the popular GSC and JS. The proposed LR-GSC model simultaneously exploits the sparsity and low-rankness of the dictionary-domain coefficients for each group of similar patches. An alternating minimization with an adaptive adjusted parameter strategy is developed to solve the proposed optimization problem for different image restoration tasks, including image denoising, image deblocking, image inpainting, and image compressive sensing. Extensive experimental results demonstrate that the proposed LR-GSC algorithm outperforms many popular or state-of-the-art methods in terms of objective and perceptual metrics.

13.
Artigo em Inglês | MEDLINE | ID: mdl-32903181

RESUMO

Group sparse representation (GSR) has made great strides in image restoration producing superior performance, realized through employing a powerful mechanism to integrate the local sparsity and nonlocal self-similarity of images. However, due to some form of degradation (e.g., noise, down-sampling or pixels missing), traditional GSR models may fail to faithfully estimate sparsity of each group in an image, thus resulting in a distorted reconstruction of the original image. This motivates us to design a simple yet effective model that aims to address the above mentioned problem. Specifically, we propose group sparsity residual constraint with nonlocal priors (GSRC-NLP) for image restoration. Through introducing the group sparsity residual constraint, the problem of image restoration is further defined and simplified through attempts at reducing the group sparsity residual. Towards this end, we first obtain a good estimation of the group sparse coefficient of each original image group by exploiting the image nonlocal self-similarity (NSS) prior along with self-supervised learning scheme, and then the group sparse coefficient of the corresponding degraded image group is enforced to approximate the estimation. To make the proposed scheme tractable and robust, two algorithms, i.e., iterative shrinkage/thresholding (IST) and alternating direction method of multipliers (ADMM), are employed to solve the proposed optimization problems for different image restoration tasks. Experimental results on image denoising, image inpainting and image compressive sensing (CS) recovery, demonstrate that the proposed GSRC-NLP based image restoration algorithm is comparable to state-of-the-art denoising methods and outperforms several state-of-the-art image inpainting and image CS recovery methods in terms of both objective and perceptual quality metrics.

14.
Artigo em Inglês | MEDLINE | ID: mdl-32822296

RESUMO

Through exploiting the image nonlocal self-similarity (NSS) prior by clustering similar patches to construct patch groups, recent studies have revealed that structural sparse representation (SSR) models can achieve promising performance in various image restoration tasks. However, most existing SSR methods only exploit the NSS prior from the input degraded (internal) image, and few methods utilize the NSS prior from external clean image corpus; how to jointly exploit the NSS priors of internal image and external clean image corpus is still an open problem. In this paper, we propose a novel approach for image restoration by simultaneously considering internal and external nonlocal self-similarity (SNSS) priors that offer mutually complementary information. Specifically, we first group nonlocal similar patches from images of a training corpus. Then a group-based Gaussian mixture model (GMM) learning algorithm is applied to learn an external NSS prior. We exploit the SSR model by integrating the NSS priors of both internal and external image data. An alternating minimization with an adaptive parameter adjusting strategy is developed to solve the proposed SNSS-based image restoration problems, which makes the entire algorithm more stable and practical. Experimental results on three image restoration applications, namely image denoising, deblocking and deblurring, demonstrate that the proposed SNSS produces superior results compared to many popular or state-of-the-art methods in both objective and perceptual quality measurements.

15.
Artigo em Inglês | MEDLINE | ID: mdl-32167891

RESUMO

Sparse coding has achieved a great success in various image processing tasks. However, a benchmark to measure the sparsity of image patch/group is missing since sparse coding is essentially an NP-hard problem. This work attempts to fill the gap from the perspective of rank minimization. We firstly design an adaptive dictionary to bridge the gap between group-based sparse coding (GSC) and rank minimization. Then, we show that under the designed dictionary, GSC and the rank minimization problems are equivalent, and therefore the sparse coefficients of each patch group can be measured by estimating the singular values of each patch group. We thus earn a benchmark to measure the sparsity of each patch group because the singular values of the original image patch groups can be easily computed by the singular value decomposition (SVD). This benchmark can be used to evaluate performance of any kind of norm minimization methods in sparse coding through analyzing their corresponding rank minimization counterparts. Towards this end, we exploit four well-known rank minimization methods to study the sparsity of each patch group and the weighted Schatten p-norm minimization (WSNM) is found to be the closest one to the real singular values of each patch group. Inspired by the aforementioned equivalence regime of rank minimization and GSC, WSNM can be translated into a non-convex weighted ℓp-norm minimization problem in GSC. By using the earned benchmark in sparse coding, the weighted ℓp-norm minimization is expected to obtain better performance than the three other norm minimization methods, i.e., ℓ1-norm, ℓp-norm and weighted ℓ1-norm. To verify the feasibility of the proposed benchmark, we compare the weighted ℓp-norm minimization against the three aforementioned norm minimization methods in sparse coding. Experimental results on image restoration applications, namely image inpainting and image compressive sensing recovery, demonstrate that the proposed scheme is feasible and outperforms many state-of-the-art methods.

16.
Artigo em Inglês | MEDLINE | ID: mdl-31841410

RESUMO

In this paper, we propose a novel approach for the rank minimization problem, termed rank residual constraint (RRC). Different from existing low-rank based approaches, such as the well-known nuclear norm minimization (NNM) and the weighted nuclear norm minimization (WNNM), which estimate the underlying low-rank matrix directly from the corrupted observation, we progressively approximate (approach) the underlying low-rank matrix via minimizing the rank residual. Through integrating the image nonlocal self-similarity (NSS) prior with the proposed RRC model, we apply it to image restoration tasks, including image denoising and image compression artifacts reduction. Toward this end, we first obtain a good reference of the original image groups by using the image NSS prior, and then the rank residual of the image groups between this reference and the degraded image is minimized to achieve a better estimate to the desired image. In this manner, both the reference and the estimated image in each iteration are improved gradually and jointly. Based on the group-based sparse representation model, we further provide a theoretical analysis on the feasibility of the proposed RRC model. Experimental results demonstrate that the proposed RRC model outperforms many state-of-the-art schemes in both the objective and perceptual qualities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...